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Instantaneous Frequencies and Trends
For Nonstationary Nonlinear Data

In search of frequency
| found the trend and other information,
e. g., quantification of nonlinearity

Prevailing Views on
Instantaneous Frequency

The term, Instantaneous Frequency, should be banished
forever from the dictionary of the communication engineer.

J. Shekel, 1953

The uncertainty principle makes the concept of an
Instantaneous Frequency impossible.

K. Grdchennig, 2001

How to define frequency?

It seems to be trivial.

But frequency is an important parameter for
us to understand many physical phenomena.

Definition of Frequency

Given the period of a wave as T'; the frequency is
defined as

Traditional Definition of Frequency

» frequency = 1/period.

+ Definition too crude

» Only work for simple sinusoidal waves

» Does not apply to nonstationary processes

» Does not work for nonlinear processes

» Does not satisfy the need for wave equations




The Idea and the need of Instantaneous
Frequency

According to the classic wave theory, the wave
conservation law is based on a gradually changing ¢(x,?)
such that
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Therefore, both wave number and frequency must have
instantaneous values and differentiable.

Instantaneous Frequency
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HHT defines the phase function = @ = &

So that both v and o can appear in differential equations.

Hilbert Transform : Definition
Forany x(t)e L’ ,

x(¢) dr ,
t-t
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then, x(t )and y(t) form the analytic pairs:

Wt)=x(t)+iy(t)=a(t) ",

where
1 Y(t)

a(t) = (x’ + y’)’” and @(t) = tan ok

The Traditional View of the Hilbert
Transform for Data Analysis
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Traditional Approach

alaHahn (1995) : Phase Angle

Traditional Approach
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The Empirical Mode Decomposition
Method and Hilbert Spectral Analysis
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Empirical Mode Decomposition:
Methodology : data & h1
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Definition of the Intrinsic Mode Function
(IMF): a necessary condition only!

Any function having the same numbers of
zero — cros sin gs and extrema,and also having
symmetric envelopes defined by local max ima
and minimarespectively is defined as an
Intrinsic Mode Function (IMF ).

All IMF enjoys good Hilbert Transform :

== c¢(t)=a(t)e®"

Empirical Mode Decomposition:
Methodology : data, r1 and m1
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Empirical Mode Decomposition
Sifting : to get all the IMF components

x(t)—-c,=r, ,

Definition of Instantaneous Frequency

The Fourier Transform of the Instrinsic Mode

Funnction, c(t), gives

W(o)= ]'a(t) e 0o gt

t

By Stationary phase approximation we have

de(t) _ S
dt

s

This is defined as the Ins tan tan eous Frequency.

An Example of Sifting
&
Time-Frequency Analysis




Length Of Day Data LOD . IMF

IR LODN - e 100 BB 3 80 N 7 A5,
Lergn OF Dy Duta

as
- &9? T ew pai1H]
o ﬁ-,i.; - T = T Bl T - |
v 33
3 . B =
E i 'gi' =5 Feezs o s e etz = =
T = LTI e e B o i it aae e K |
: N = = s = L0
[ ':1_:.- T T T Fr T BT erAT TR T T 153 ——
i . :33 ar wapa e i B i -~
i — g ——— e e - - —
"
e . = =" -
= i = — S == e i —-
el . -y
L T e M B L o e o e e e
Toves  yomme Torm - ymar
Orthogonality Check .
9 y LOD : Data & c12
Pair-wise % « Overall % = Lomgh (O Diry e e} THAF -, 10
0.0003 - 0.0452
0.0001
0.0215 &
0.0117 ﬁ I
0.0022 ® 2
0.0031 x
0.0026 [
0.0083
0.0042 i
0.0369
0.0400
= i ww wmrn ura ==y =y = =3 ) EE

L —

LOD : pata & Sum c11-12 LOD : Data & sum c10-12

e o T A ]

L OF Dy vt et BT o0 1092

Sovaihan bors 4 W i Decond
Sovaihan bors 4 W i Decond

Vet [ T rmfa =1 = (e i = £ Vet [ T rmfa =1 = (e i = £
Trms e Trms e




Sovaihan bors 4 W i Decond

LOD : pata&c9-12
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Properties of EMD Basis

The Adaptive Basis based on and derived from
the data by the empirical method satisfy nearly
all the traditional requirements for basis
empirically and a posteriori:

Complete
Convergent
Orthogonal
Unique

The combination of Hilbert Spectral Analysis and
Empirical Mode Decomposition has been

designated by NASA as

HHT

(HHT vs. FFT)

Comparison between FFT and HHT

1. FFT :

x(t)=%R Zajei"f' .
7

Comparisons:
Fourier, Hilbert & Wavelet
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Traditional View

alaHahn (1995) : Hilbert

Mean Annual Cycle & Envelope: 9 CEl
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For

For quantifying nonlinearity we also need
instantaneous frequency.

How to define Nonlinearity?

How to quantify it through data alone?

The term, ‘Nonlinearity,” has been
loosely used, most of the time, simply
as a fig leaf to cover our ignorance.

Can we be more precise?




How is nonlinearity defined?

Based on Linear Algebra: nonlinearity is defined based
on input vs. output.

How is nonlinearity defined?

Linear Systems

Linear systems satisfy the properties of superposition
and scaling. Given two valid inputs to a system H,
x,(t) and x,(t)

as well as their respective outputs
yi(t)=H{x,(t)} and
Y.() =H{x,(1)}

then a linear system, H, must satisfy

ay1(t)+ﬂy1(t)= H{axl(t)"'ﬂxz(t)}

for any scalar values a and .

But in reality, such an approach is not practical: natural

system are not clearly defined; inputs and out puts are
hard to ascertain and quantify. Furthermore, without

}(he governing equations, the order of nonlinearity is not
nown.

In the autonomous systems the results could depend
on initial conditions rather than the magnitude of the
‘inputs.’

The small parameter criteria could be misleading:
sometimes, the smaller the parameter, the more
nonlinear.

How should nonlinearity be
defined?

The alternative is to define nonlinearity based
on data characteristics: Intra-wave frequency
modulation.

Intra-wave frequency modulation is known as
the harmonic distortion of the wave forms. But
it could be better measured through the
deviation of the instantaneous frequency from

the mean frequency (based on the zero
crossing period).

Characteristics of Data from
Nonlinear Processes
d’ x

i +x+ex’ = ¥y cosot

wt x(l +sx") = y cos ot

= Spring with position dependent cons tant,
intra — wave frequency mod ulation;

therefore,we need ins tantan eous frequency.

Duffing Pendulum

2
‘2; + x(1+ &x?)=ycosmt




Duffing Equation : Data
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Hilbert’s View on Nonlinear Data
Intra-wave Frequency Modulation

A simple mathematical model

x(t) = cos(mt + O sin Za)t)

Duffing Type Wave
Data: x = cos(wt+0.3 sin2wt)

ds TPy by m
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Duffing Type Wave

Perturbation Expansion
For & << 1, we can have
x(t)= cos(wt + &sin Za)t)

= cos @t cos (5 sin Zwt) — sinet sin (5 sin Zwt)
= cosot — 8 sin@t sin 2t + ....

= I—i cosot + i cos 3ot + ....
2 2

This is very similar to the solution of Duffing equation .

Duffing Type Wave

Wavelet Spectrum
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Duffing Type Wave
Hilbert Spectrum
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Degree of nonlinearity

Let us consider a generalized intra-wave frequency modulation model
as:

x(t)=cos(ex+0Osinnex) = IF_%0=W(1+'I‘$C"SW)

IF, 2

z

1/2
o F-1IFY\ ps
DN (Degree of Nolinearity ) should be oc = ==.

Depending on the value of i, we can have either a up-down symmetric

or a asymmetric wave form.

Degree of Nonlinearity

» DN is determined by the combination of dy precisely with
Hilbert Spectral Analysis. Either of them equals zero
means linearity.

» We can determine ¢ and 5 separately:
— 5 can be determined from the instantaneous

frequency modulations relative to the mean frequency.

— 0 can be determined from DN with known #.

NB: from any IMF, the value of d; cannot be greater
than 1.

e The combination of 6 and n gives us not only the Degree of
Nonlinearity, but also some indications of the basic
properties of the controlling Differential Equation, the Order
of Nonlinearity.

Stokes Models

d’x
dt’

2
+x+&x’ =ycosat withe= i y=0.1.
25

Stokes I: & is positive ranging from 0.1 to 0.375;
beyond 0.375, there is no solution.

Stokes 1I: g is negative ranging from 0.1 to 0.391;
beyond 0.391, there is no solution.

Data and IFs : C1

Stokes Model c1: e=0.375; DN=0.2959
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Lorenz Model

Lorenz is highly nonlinear; it is the model
equation that initiated chaotic studies.

Again it has three parameters. We
decided to fix two and varying only one.

There is no small perturbation parameter.

We will present the results for p=28, the
classic chaotic case.

Phase Diagram for ro=28

Lorenz Phase : ro=28, sig=10, b=8/3
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How to define Trend ?

Parametric or Non-parametric?
Intrinsic vs. extrinsic approach?

The State-of-the arts: Trend

“One economist’s trend is another
economist’s cycle”

WatSOI’I . Engle, R. F. and Granger, C. W. J. 1991 Long-run Economic
Relationships. Cambridge University Press.

Philosophical Problem Anticipated
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On Definition

Without a proper definition,

logic discourse would be impossible.
Without logic discourse,

nothing can be accomplished.

Confucius

Definition of the Trend

Within the given data span, the trend is an intrinsically
fitted monotonic function, or a function in which there
can be at most one extremum.

The trend should be an intrinsic and local property of the data; it is
determined by the same mechanisms that generate the data.

Being local, it has to associate with a local length scale, and be valid only
within that length span, and be part of a full wave length.

The method determining the trend should be intrinsic. Being intrinsic,
the method for defining the trend has to be adaptive.

All traditional trend determination methods are extrinsic.

Algorithm for Trend

* Trend should be defined neither
parametrically nor non-parametrically.

* It should be the residual obtained by
removing cycles of all time scales from the
data intrinsically.

» Through EMD.




Global Temperature Anomaly

Annual Data from 1856 to 2003

Global Temperature Anomaly 1856 to 2003
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Data and Trend C6
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Rate of Change Overall Trends : EMD and Linear

Conclusion

With EMD, we can define the true instantaneous
frequency and extract trend from any data.

We can also talk about nonlinearity quantitatively.

Among other applications, the degree of nonlinearity
could be used to set an objective criterion in structural
health monitoring and to quantify the degree of
nonlinearity in natural phenomena; the trend could be
used in financial as well as natural sciences.

These are all possible because of adaptive data analysis
method.

The Job of a Scientist

The job of a scientist is to listen carefully to
nature, not to tell nature how to behave.

Richard Feynman

To listen is to use adaptive method and let the data sing, and
not to force the data to fit preconceived modes.

All these results depends on adaptive approach.

Thanks




